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The automatic recognition of user sentiments through their music listening behavior is an important research task in cognitive
studies. Whereas prior studies were conducted to identify the sentiment conveyed (or evoked) by a song that a user listens
to at a particular time, we argue that a more effective method would be to identify the user’s induced sentiment based on
the comprehensive list of songs they have listened to (e.g., the sequence of music being played). However, recognizing the
sentiment information induced by a playlist using machine learning techniques is much more challenging than identifying
the sentiment induced by a single song, as it is difficult to obtain accurately labeled training samples for playlists. In this study,
we developed the List-Song Relationship Factorization (LSRF) model with the objective of efficiently identifying sentiments
induced by playlists. This model employs two side information constraints: the sentiment similarity between songs, based on
multimodal information, and the co-occurrence of songs in playlists. These constraints enable the simultaneous co-clustering
of songs and playlists. The experimental results demonstrate that the propesed model efficiently and consistently identifies
sentiment information evoked by either playlists or individual songs.

CCS Concepts: « Computing methodologies — Non-negative matrix factorization; « Information systems — Mullti-
media information systems.

Additional Key Words and Phrases: Music sentiment, playlist, matrix factorization, multimodality data, co-clustering

1 INTRODUCTION

The emotional experience associated with music plays an important role in motivating creators and listeners to
engage in musical activities [46, 82]. There are two main aspects of emotion in music: the expression of emotion
through composition and performance (i.e., music-expressed emotion [MEE] [76]), and the induction or regulation
of emotional states through listening (i.e., music-induced emotion [MIE] [78]). MEE is associated with the music
creator and is embedded in the song’s data (e.g., audio [96] and lyrics [81]), whereas MIE is linked to the listener
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and can be observed in listener’s emotional response data (e.g., self-reports [95], expressive behaviours [19] and
physiological responses [40, 50]).

The identification of emotions triggered by music (i.e., MIEs) has been demonstrated to have numerous practical
applications in fields such as marketing [6], sport [74], and emotional therapy [17, 55]. Consequently, a surge
in research on the recognition of MIEs has been observed in the literature [89]. Prior studies identified MIEs
by measuring listeners’ emotional responses[48]. However, recent research has also revealed some interesting
phenomena in listeners’ emotional responses that have been overlooked in prior studies. First, the same listener
may exhibit different responses at different times [40] and in different situations [47]. Second, different listeners
may respond differently to the same music clip [78, 96]. Thirdly, emotional responses to musical pieces are
typically not long-lasting [67]. Consequently, even if researchers accurately identify listeners” MIEs through their
emotional responses at a particular point in time, they may observe these MIEs to be in a state of flux, making it
challenging to practically apply identification results. For instance, if a listener’s emotional response to a piece of
music is observed to be “depressed and moody” at a particular time, it is challenging to determine whether this
indicates that the listener is experiencing some form of mental distress due to the transient nature of MIEs.

The preceding discussion illustrates that although existing methodologies can be used to detect immediate
emotional reactions to music, these reactions may have limited utility in practical applications such as music
therapy and situational music-playing scenarios. These findings suggest that while current methods can capture
short-term emotional responses to music, they might not be sufficient for effective intervention or interaction in
real-world settings. One study suggests that it is more meaningful to identify the listeners’ relatively stable and
sustained emotions or sentiments [63], evoked by their cumulative listening experience, than by focusing solely
on the effects of a single song. For instance, a significant correlation has been demonstrated between the amount
of music a patient listens to and changes in their treatment outcomes [14]. Notably, an individual’s cumulative
listening experience is determined by the songs they listen to over a period of time, typically arranged in the
form of a playlist [49].

Playlists can be generated in one of three ways: by a listener’s preferences (i.e., a user-generated playlist [30]),
secondly, by a system/platform recommendation [12], or by a random generation [5]. Generally, a playlist is a
sequence of songs that individuals may listen to collectively [49]. Individuals tend to prefer playlists that are
relevant to their daily activities [3, 30, 58], suggesting that the organization of playlists may be based upon
underlying logic or themes [5]. It can therefore be assumed that the sentiments evoked by playlists to which
users continually listen are more likely to be consistent with their true sentiments. Accordingly, sentiment-based
playlists represent a promising use case for music organizations [69].

However, the application of machine learning to identify sentiments associated with playlists presents technical
challenges. Firstly, although there is no direct evidence of this, several studies suggest that although a playlist’s
overall sentiment is shaped by the content of its songs, it cannot be reduced to a simple sum of emotions for each
individual song [28, 66]. Secondly, machine learning methods require well-labeled samples to train models, which
are typically obtained through expert annotation [10]. However, user-generated playlists are personal, relatively
unstructured, and variable in length, making manual annotation time-consuming [2]. Thirdly, it is difficult to
ensure the quality and consistency of expert annotation results given songs of different styles. These challenges
indicate that the expert annotation of mood for a collection of music is less effective than that for a single piece
of music. Finally, the increasing number of user-generated playlists has led to sparsity problems owing to the
varying popularity of songs and their frequency of inclusion in playlists [23]. Therefore, the following research
question can be posed:

e Given the limited number of expert-annotated samples available, how can we efficiently and accurately
identify the sentiments induced by songs and playlists?
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One effective approach to address this issue is to utilize the significant correlation between specific underlying
interrelated factors, such as songs and playlists [77]. To achieve this, we present the novel List-Song Relationship
Factorization (LSRF) model, designed to accurately identify sentiments in both songs and playlists. This study
makes three major contributions to the literature:

e We present the novel LSRF model for the sentiment recognition of songs and playlists. The model
leverages a vast collection of user-generated playlists to establish a series of “song-list” associations. This
methodology enables the precise recognition of playlist sentiments even in situations where only a limited
number of playlist sentiment tag samples are available;

e We designed a methodology to vectorize song information through the fusion of multimodal data -
specifically audio and text — thereby enabling machine learning algorithms to leverage more accurate
information about sentiment similarity between songs;

e Through extensive data experimentation, we found that audio data play a more significant role in recogniz-
ing playlist sentiments than textual data such as lyrics and synopses. Moreover, we obtained experimental
evidence that sentiment for a given playlist is not simply a sum of the sentiments of individual songs on
the playlist.

The remainder of this paper is organized as follows. Section 2 discusses the related work. Section 3 describes
the proposed method for recognizing song and playlist sentiments. Section 4 describes the data preprocessing
steps, and Section 5 presents experimental results. Finally, Section 6 concludes the paper.

2 RELATED WORK
2.1  Music Data Processing

Our work falls within the domain of music emotion recognition (MER) [29], which entails the use of computational
methods to process musical data and establish mapping relations between musical features and the emotional
space.

2.1.1  Music data processing. Musical content primarily consists of audio data [64, 96] and textual data (i.e., lyrics)
[8, 46, 81], with the occasional inclusion of video content [94]. The processing of music data in MER frequently
requires the utilization of automated techniques to facilitate the preselection of important features [65, 89]. Earlier
studies primarily used statistical methods to achieve this [81]. For example, the TF-IDF model was employed to
identify sentiment features within lyrics [81].

Recently, ensemble learning methods have attracted significant attention from researchers owing to their
ability to handle more complex training data, allowing them to consider the role of the majority of given data and
autonomously learn the weights of different features. However, the aforementioned methods incur information
loss in the process of discarding noisy data, either through feature selection from the training set or by assigning
weights to features. This process involves transforming the original music data into a suitable representation
space and then performing emotion calculations, resulting in satisfactory predictive performance. For instance,
[64] examined standard audio features from established frameworks and developed an approach to categorize
music into eight categories. In particular, the emergence of deep learning methods has provided superior options
for processing music data [51].

2.1.2  Multimodality data fusion. In recent years, researchers have come to recognize the significance of integrat-
ing data from multiple modalities to predict musical emotions [38, 98]. The use of multimodal data has enabled
the acquisition of large-scale heterogeneous multimedia data for sentiment analysis [79]. One common approach
involves integrating audio and textual information from songs to identify the emotions conveyed by the songs
[72].
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The incorporation of multimodal data into the MER framework expands the scope of information available for
the recognition of music emotions [92], including MEEs and MIEs. In the field of MER research, the fusion of
audio-text data represents the most extensively discussed topic [79, 83, 98]. The fusion of audio and video data
has likewise emerged as a topic of interest [94, 98]. Studies have also emerged on the fusion of music data with
physiological data, such as electroencephalography (EEG) [75] and electrodermal activity signals [92].

However, the use of multimodal data introduces significant computational complexities. To address this issue,
deep learning approaches such as deep representations [61, 79], are now commonly employed in MER research.

2.2 Music Emotion (Sentiment) Recognition

2.2.1 Emotion model. Emotions associated with music are typical measured using two types of representational
models: categorical emotion states (CES) [35] and dimensional emotion space (DES) [68]. The categorical approach
describes emotions using a limited number of innate and universal categories such as happiness, sadness, anger,
and fear. The dimensional model considers all affective terms arising from independent neurophysiological
systems: valence (negative to positive) and arousal (calm to exciting) [38, 68].

Prior research has indicated that the category model is somewhat ambiguous [85], whereas the DES is more
consistently effective in evaluating MIE [78]. However, from the perspective of listeners’ MIE, category-emotion
information offers the advantage of being easily understandable by non-specialists [97]. Moreover, categorical
information is closely linked to human behaviors, particularly manual labeling behaviors [71]. It is important to
note that the metrics of dimensional models in data-driven emotion research are frequently inaccurately obtained
from listeners’ self-reports [44]. Consequently, some studies regarded positive and negative as separate categories
in contrast to the parametric approach of the valence-arousal space [15, 52].

It is worth examining how MIE data can be obtained from listeners” emotional responses, and how these
responses can be mapped to an appropriate emotion model. In general, emotional responses [2] can be quantified
through self-report [95], expressive behaviour [19] and physiological responses (i.e., EEG [50]). In the case
of music, it can be argued that [2]: 1) expressive behaviour is not a common phenomenon; 2) physiological
signals provide a more objective means of observing certain listener behaviors and important physiological
data. However, some emotions may be felt more than acted upon, and these emotions might not have obvious
behavioral, expressive, or physiological manifestations [96]. Consequently, self-reporting, which requires listeners
to report their emotions while listening to a song, is the most widespread - and arguably most informative -
measure, as it provides insight into the cognitive aspects of emotions that are otherwise inaccessible [2, 95].

2.2.2  Emotion(Sentiment) Recognition Method. Prior studies on music emotions have focused on detecting two
key types of information: MEEs and MIEs [46]. The task of automatically identifying MEEs is related to song data
(i.e., audio [64, 96], lyrics [8;46, 81], and video content [94]), whereas that of identifying MIEs is related to the
listeners’ emotional response data (i.e., listeners’ self-reports [95], behavioural changes [19], and physiological
signals [50]).

Generally, the objective of MEE detection is to establish a mapping from song data SD to an emotion mea-
surement space ES, whereas that of MIE detection is to establish a mapping from emotional response data RD
to ES [29]. Machine learning plays a pivotal role in the recognition of music emotions, particularly given large
enough datasets SD and RD [29, 87, 90]. Table 1 presents a selection of studies that employed machine learning
techniques to identify the MIE and MEE.

Note that, the emotional resonance of music allows the listener to connect with the emotions conveyed by the
music, thereby serving as a significant indicator of the listener’s emotional state [45]. As a result, the processes of
identifying the MEE and MIE are inherently interconnected, with the song being listened to acting as the bridge
between them.
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Table 1. Sample studies on MIE and MEE recognition

Tasks Data type Technique

MEE and MIE  Audio PCA + Random Forest (RF) [87]
Audio Gaussian Mixture Model [80]

MEE Audio CNN+SVM [36]; CNN + RNN [22]
Lyrics Decision Tree (DT) [88], SVM [8]
Lyrics + Audio CNN [94]

MIE Audio PCA+SVM [91], AdaBoost [91]
Physiological signal SVM, NB, KNN, DT [40]
EEG PCA [50], CNN+LSTM [43]

The potential business and medical applications of playlists have fueled a range of playlist-related MER studies.
Such applications include playlist-based song recommendation [30, 49, 77], the scenario-based generation of music
playback sequences [58], and bot-generated (random) playlists on platforms [3,5]. To the best of our knowledge,
the problem of identifying the MIE of a playlist has not yet been addressed. Accordingly, this study was conducted
to investigate listeners’ emotional responses to music playlists, i.e., music(playlist)-induced emotion.

2.3 Nonnegative Matrix Factorization

Non-negative matrix factorization (NMF) is a matrix operation originally employed as a relatively novel paradigm
for dimensionality reduction [86]. The operational features of NMF can be characterized as follows: first, non-
negativity constraints are used to obtain a partial representation that improves the problem’s interpretability
[84]; secondly, by adding some necessary side information [37], NMF can be used to normalize the convergence
of matrix factorization results to a particular space.

Although most prior NMF studies focused on the two-factor approach, the three-factor approach has been
subjected to a comprehensive and systematic analysis. The results of the study [20] demonstrate that the orthogonal
tri-factor NMF (ONMTF) is capable of clustering both the rows and columns of the input data matrix. In the
literature, ONMTF is widely used to determine class membership in a diverse range of clustering applications,
including recommendations [73], text clustering [11], and sentiment classification [57].

3 METHODOLOGY
3.1 Problem statement

The automatic recognition of user sentiments through their music listening behavior is a significant research
topic in cognitive studies. As discussed earlier, we believe it is more effective to identify users’ sentiment based
on their generated playlist of songs (a series of music being played) rather than the specific song to which they
are currently listening;

Assuming that the collection of playlists constitutes a ‘playlist space’ denoted by L = {1, ..., I, }, where there are
m distinct lists containing a total of n unique songs, the set of songs forms a ‘song space’ denoted by S = {sy, ..., s}
Furthermore, it is possible to construct a sentiment space with ¢ dimensions, denoted as E = {ey, ...e.}, where the
value of ¢ is determined by the number of sentiment clusters in the song space. We adopted an approach similar
to that in previous studies[53, 90] by setting ¢ = 3. Thus, our sentiment space was defined as follows:

E = {ey, e;, e5} = {Positive, Negative, Neutral}. (1)
Letting s;; denote the j-th song in the i-th playlist [;, we can define the structure of a playlist [; € L as follows:
i = (sit, s Sijs o), (2
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where s;; € S, and the relationship /; C S is easily obtained. Based on the co-occurrence relationship of songs in
I;, we may construct the following “list-song” relationship matrix:

air  dre Qa1in
azy azy a2n

A=| . . . ®3)
aAm1 Am2 e Amn

where a;; denotes the frequency at which the j-th song appears in playlist /;. Note that Equation (3) does not
assume that all playlists contain the same number of songs. If the j-th song in S is not in the i-th playlist, then
we can simply set a;; = 0.

Furthermore, the MIE sentiment inspired by a song s € [ is denoted as e, whereas that inspired by an entire
playlist [ is denoted as e;. Both sentiments exist within the space E. Accordingly, the research problem can be
expressed as follows:

e How can the prior sentiment information in the song space S and “list-song” association A be used to
accurately identify the sentiment of song playlists in L?

In the following subsection, we describe the proposed LSRF model designed to identify sentiments from
playlists and individual songs.

3.2 Research framework

ONMTEF [20] is commonly used to explore information within data structures [41, 93], as described in Equation

(4):

min O=|A-UHV' |4, 5t, UU=LVV=I, @)
U.H,V>0
where || - || denotes the Frobenuis norm of a matrix, V € R{*"* is the sentiment matrix of songs, H € R{*¢ is the

“list-song” topic relationship matrix, U € RI"*° is the sentiment matrix of playlists, and I is the identity matrix.
This equation describes the decomposition of the co-occurrence matrix A into three matrices U, H, and V, while
minimizing the information difference.

The proposed LSRF model is illustrated in Figure 1. The core ONMTF process performs the sentiment-based
clustering of both songs and playlists on a list-song matrix A. To guarantee that the outcome of the matrix
decomposition - namely the matrices U, V, and H - falls within the sentiment space delineated by Equation
(1), LSRF imposes four constraints: the blue path in the upper half of Figure 1 depicts the process of adding the
expert annotations as constraints to the song clustering; the gray path shows how similarities between songs,
as determined by their multimodal data representations, are added to the song clustering; the blue path in the
bottom half of Figure 1 shows the process of imposing fewer expert annotations on the playlist clustering; and
the gray path shows the addition of audio and text similarity between playlists to the playlist clustering.

In the training phase, the LSRF accepts the list-song relationships - i.e. the matrix A - as input. The outputs are
the sentiment representations of the sample lists and the songs in space E, that is, matrices U and V, respectively.
In the testing phase, matrix U can be used as a classifier to infer sentiment information about unknown playlists
by musical data similarity [59] or by training an additional sentiment classifier [86]. Similarly, matrix V can be
used as a classifier to infer sentiment information regarding sentiment-unknown songs.

Essentially, the model is trained on a large volume of expert-labeled MIE information from songs (Subsection
3.3) and a small volume of expert-labeled MIE information from playlists (Subsection 3.4). The LSRF incorporates
two essential pieces of additional information: the MIE associations between pairs of similar songs (Subsection
3.5), and pairs of similar playlists (Subsection 3.6). Finally, the song-playlist matrix is decomposed to compute the
MIE association between songs and playlists (Subsection 3.7).
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Fig. 1. Framework of the LSRF model.

3.3 Modeling the sentiment annotations of songs

The sentiment annotation results of songs are modeled to ensure that the final sentiment labels assigned to
the songs by the LSRF model are maximally consistent with the expert annotations. This can be achieved by
minimising the following loss functions:

IV = Vo Il )
where V € R"*¢ is the song cluster matrix and V; € R”*¢ represents the initial sentimental information matrix of
the song space. According to the definition of Equation (1), V5 (i, *) = (1, 0,0) indicates that song i has a positive
sentiment; Vp (i, %) = (0, 1, 0) indicates that song i has a negative sentiment; while V; (i, *) = (0, 0, 1) indicates that
song i has a neutral sentiment; and V; (i, *) = (0, 0, 0) indicates that song i has an unknown sentiment.

To mitigate the noisy effects introduced by unknown elements of V;, we introduce the diagonal indicator
matrix G® € {0, 1}™*" to identify whether the sentiment information of a song has been expertly annotated with
a true label. Specifically, G?(4,7) = 1 indicates that song i has been expertly annotated with a true sentiment label,
whereas G?(i, i) = 0 indicates otherwise. Using this information, the loss function for all songs can be expressed
as follows:

I G*(V = Vo) Il - (©)

3.4 Modeling the sentiment annotations of playlists

Although we acknowledge that the manual annotation of playlists is more challenging than that of songs, the LSRF
model represents a semi-supervised machine learning method that utilizes a limited number of sentiment-marked
playlist samples to guide the clustering process, thereby enhancing its efficacy.

In the learning process, the LSRF aims to closely match the initially annotated values of expert-labeled lists
with the learned sentiment information, as in the case of modeling song-sentiment annotations. This process can
be equated to minimizing the following loss function:

ACM Trans. Multimedia Comput. Commun. Appl.
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2
I G*(U -Uo) Il - (7)
where G* € {0,1}™ ™ is a diagonal indicator matrix indicating whether the playlist has been annotated by
experts, and U, € R™*¢ represents the initial sentiment information matrix of the playlists.

3.5 Modeling the sentiment relevance of songs

3.5.1 Multimodal data representation of song. When identifying the sentiments conveyed by a song, the LSRF
primarily analyzes its audio and textual components [94], with the latter mainly consisting of lyrics (if available)
and the song’s profile text. To effectively combine the two modalities for sentiment recognition, it is necessary to
transform them into a computationally useful format, specifically, a vectorized representation of the song.
Given a song s; € S, we employed convolutional neural networks (CNNs) to vectorize the audio data sl.(a) of s;
owing to the proven success of such networks in audio classification tasks [34]. The audio data si(a) for song s; is

fed into a CNN architecture, resulting in a d-dimensional vector sfa) € R4, Given two songs, s; and s;, we can
calculate their audio modal similarity as follows [70]:

s@ @
. (a) (a) i J
szm(s. .S ) = (8)
T s s |

Additionally, we treat the text associated with s; as a document sl.(t) and utilize the BERT [18] method to
vectorize it, resulting in a vector sl.(t) € RY. The textual similarity sim(sl.(t), s](.t)) can likewise be calculated using
Equation (8). Finally, different weights are assigned to each modal similarity to derive the weighted cosine
similarity between the two songs [56] as follows:

sim(s;, sj) = asim(sft),s;t)) +(1 - (x)sim(si(a), s}a)), 9)
where o € [0, 1] that represents the importance of the text modal similarity. This scheme partially compensates
for the deficiency that results from the inability to synchronize the optimization of CNN/BERT and NMF in the
training phase.

3.5.2 Manifold regulation of sentiment relevant songs. Previous research on spectral graph theory [13] and
manifold learning theory has demonstrated that a local geometric structure can be accurately represented by a
nearest neighbor graph based on the distribution of data points [7]. In light of this, we constructed a song-song
relationship graph G° to depict the sentimental correlation between songs.

We considered the top-k songs that were similar to s; and also sentimentally relevant to s;. To simplify the
edges in graph G° we retained only the connections between each song and its top-k similar songs. Consequently,
the adjacency matrix of the graph G? can be expressed as follows:

1, iij ENk(Si);

. (10)
0, otherwise,

We(i, j) ={

where NX(s;) represents the set of k-nearest neighbors for song s;. We can infer from the previous discussion
that if two nodes are close to each other in the graph G, their corresponding sentiment labels will also be similar.
This inference can be expressed mathematically by minimizing the following loss function:

DS NV = Vo) I WG ) = TV (D° =WV, (1)

i=1 j=1
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where Tr(.) is the trace of a matrix, D® — W? is the Laplacian matrix of the graph G° [13, 27], D € R™", and
D?(i,i) = Y2, W?(i, j). If two songs are close on graph G? but have different sentiment labels, Equation (11)
will penalize this discrepancy.

3.6 Modeling the sentiment relevance of playlists

3.6.1 Data representation of playlists. When a user enjoys a particular playlist, the songs comprising the playlist
work together to influence their sentiment. Assuming that the audio representation vector for song s;; is denoted

as sg.l) , the audio features of /; can be expressed as follows:

(a)

2 ijS;;
1@ = 20 TUT (12)

Zj aij

Accordingly, the audio similarity of playlists [; and [; can be measured as follows:
(@) (@
- c7(@) (a) i J
sim(LY, 1Y) = —————. (13)
S N A [Tl

Subsequently, the text data of each song in the playlist have been vectorized, enabling the calculation of textual
similarity sim(ll.(t) , lj(.t) ) for the entire playlist using the weighting provided by Equation (12). The multimodal-based
similarity between two playlists is then determined through a calculation similar to Equation (9). Furthermore,
previous research has demonstrated that the melodies of songs have a greater impact on eliciting sentiments
than the lyrics [1]. Hence, in the computation of sentiment similarity between two playlists, it is essential to pay
considerable attention to the influence of the audio characteristics of each playlist.

3.6.2  Manifold regulation of sentiment relevant playlists. We constructed a list-list relationship graph, denoted as
GY, to represent the sentiment correlation between playlists. To simplify the edges in G¥, we retained only the
connections of each playlist with its top-k similar neighbors. Consequently, the adjacency matrix of G* can be
expressed as follows:

1, ifl; € N5(Iy);

. (14)
0, otherwise,

WH(i, j) = {
where N%(I;) represents the set of the k-nearest neighbors of ;. The rationale behind this approach is that nodes
close to each other in a graph tend to have similar sentiment labels. This can be formalized by minimizing the
following loss function:

DI NUGH -UG ) IE WG, j) = TrUT (D" = W*)U), (15)

i=1 j=1

N | =

where Tr(.) is the trace of a matrix, D — W* is the Laplacian matrix of graph G*%, D* € R™ ™ and D“(i,i) =
m oW (i, f).
=1 >

3.7 Exploring sentiments in playlists

3.7.1 Objective function. Building upon the previous analysis, we integrated expert-labeled prior information, geometric
regularization, and the original NMF objective function to construct a mathematical model for investigating the
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sentiments of complex playlists. The model can be formulated by the following optimization problem:

,min 00 =| A-UHVT |2 +A¥ || G*(U - Uy) |2 +A4Tr(UT (D" - W*)U),

,H, V>
+ AV || GX(V = Vp) |2 +A5Tr (VI (D® = WO)V), (16)
st, UTU=1 viv =1,

where A7, A3, A7, and A3 are positive regularization parameters that control the contribution of expert-labeled playlist
sentiment data, sentiment correlation between playlists, expert-labeled song sentiment data, and sentiment correlation
between songs, respectively.

3.7.2 Optimization algorithm. Because no closed-form solution exists for model optimization (16), we utilized a
local-optimization-based approach that has been previously employed to address similar problems [20, 27, 41].
We first derive the updating rule for H as follows:

[UTAV](, /)

[UTUHVTV](i, )" (17)

H(i, j) « H(i,j)\/

To simplify the expression, we define I'y = UTAVHT — HVTVHT - 2*UTG*(U - Uy) - A4UT (D" - W*)U,
If3,j) = w and I';; (i, j) = M then the updating rule for U is defined by Equation (18).

[AVHT + 2G Uy + ¥WHU +UT;1(i, j)
U(i,j) « UG, Jj) e YTy ~ & . (18)
[UHVIVHT + A{G*U #+ Ay D*U + UT ] (i, j)
Finally, the updating rule for V is given by the following Equation (19),
ATUH + A°G?V, + AAW?V + VT ] (i, j
VJ) = VU o — . LT/ (19)
[VHTUTUH + AYG®V + AID*V + VT3] (i, j)

where I'}; is defined as T, (i, j) = w, I, (i) = w, and Ty is definedas VI ATUH-HTUTUH -
2VIGP(V - Vy) = A2VT (D - WO)V.

Accordingly, we present the Algorithm 1 as a way to optimize the model described by Equation (16). Initially, the
algorithm accepts the list-song and external information matrices as input. It then constructs the a priori knowledge
relationship matrix and initializes a set of matrices of U, H, and V. Two of these matrices are fixed while iterating
over the third matrix using Equations (17)-(19) until convergence is reached. Matrix U, which is obtained through
factorization, represents the sentiment clustering (recognition) outcome for playlists, whereas matrix V represents the
sentiment clustering outcome for songs.

4 THE DATASET
4.1 Data source

All data utilized in this study were acquired from the digital music social platform, ‘NetEase Cloud Music’ (http://mu-
sic.163.com/). Figure 2 illustrates a representative instance of a user-generated playlist on the platform.

We collected 13,565 playlists encompassing 1,621,869 songs. The number of songs on each playlist varied from 1
to 1,000, with an average of 119 songs per playlist. Table 2 presents a summary of the data. Notably, the majority of
playlists encompassed multiple genres [54], which posed a challenge for experts in charge of annotating the playlists
with sentiment labels.

The songs comprising our dataset are represented by two primary forms of data: audio data in the MP3 file format,
and textual data in the form of lyrics and/or profile files. Table 3 presents statistical information regarding the two data
modalities.
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Algorithm 1 Recognizing Sentiments of Playlists and Songs Based on Matrix Factorization.
: Input: {A, Uy, Vo, W9 A%, A7, A3}

: Output: Matrix U;

: Construct matrices G%, GY;

: Construct Laplacian matrix D? — W¥¢;

: Initialize U,V, H > 0;

: while Not convergent do

Update H(i, j) according to relation (17);
Update U(i, j) according to relation (18);
Update V (i, j) according to relation (19);
: end while

: return Norm(U).

_ e
—_ O

Fig. 2. Example of a playlist in “NetEase Cloud music”

Table 2. Summary of crawled data

Item Statistics
Total number of playlists 13,565
Total number of songs 1,621,869

Maximum number of songs in the list 1,000
Minimum number of songs in the list 1
Average number of songs in the list 119.56
std 167.23

4.2 Data pre-processing

To identify the sentiment information of songs and playlists from the collected unstructured multimodal music data,
three preprocessing stages were required. First, we invited experts to annotate sentiment labels for the sample data.
Subsequently, we transformed the audio data into vectors. Finally, we transformed the textual data into vectors.
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Table 3. Characteristics n of song data

Audio data Statistics | Text data Statistics
Total number of audio data 5,393 Total number of text data 5,290
Maximum audio length (second) 3,600.38 | Maximum text length (sentence) 525
Minimum audio length (second) 15.36 Minimum text length (sentence) 1
Average audio length (second) 236.10 Average text length (sentence) 58.40
Standard deviation 145.39 Standard deviation 34.63

4.2.1 Sentiment Label Annotation. The LSRF model was trained in a semi-supervised manner. We asked three experts,
one of whom had a qualified background in music education, to manually annotate the sentiment conveyed in a selected
number of songs and playlists [90]. This meticulous process was performed to ensure the acquisition of a representative
data sample. Each expert individually labeled a group of songs. Because we specifically focused on MIEs, the following
labeling guidelines were set: “after listening to a song (or a list of songs), please report ‘positive’ if you feel good (joy,
happiness, relaxation, excitement, or a similar feeling) or ‘negative’ if you feel bad (sad, anxious; tired, angry, or a similar
feeling); otherwise, please report ‘neutral’” These guidelines were set because the classification of music MIEs into
positive, negative, and neutral categories is intuitive and easy to understand. In addition, this classification scheme
relates to the valence dimension of the Russell’s circumplex model of affect [68], which is commonly used in MIR
research.

Importantly, the challenging nature of annotating the sentiment labels of playlists [39] presents a significant barrier
to obtaining sufficient machine learning training samples. We adopted the following strategy to label the sentiment
information of sample playlists. First, the experts listened to all songs in the training set independently. Songs in the
same playlist were listened to continuously with an interval of less than 45 seconds, whereas intervals of more than 1
min were set between playlists. Secondly, if all three experts agreed on the mood conveyed by a playlist, then the label
of the playlist was ascertained and the playlist itself considered ‘easy-to-identify. If the three experts disagreed, the
label was determined through discussion and the playlist was considered ‘hard-to-identify. Playlists that could not be
evaluated were discarded.

Notably, the playlists within our dataset exhibited varying degrees of quality and required suitable filtration. Because
the number of playlist plays can be an indicator of popularity and quality, we used a threshold of 10,000 plays, yielding
1,964 higher-quality playlists. These playlists were subsequently evaluated by the experts, who listened to each song on
each list and assigned positive (822), negative (566), or neutral (576) labels based on their overall impressions. In total,
these playlists contained 7,909 distinct songs.

Because different sections of a song may evoke disparate emotional responses, the emotional impact of a song
cannot be reduced to the sum ofits parts, and the focus of this study was on identifying more enduring and prolonged
emotions, it was deemed sufficient to simply request the experts to provide their overall sentiment ratings of each song
without delving excessively into localized sentiments, such as those of individual clips.

4.2.2  Audio Data Processing. The LSRF generates a d-dimensional vector that characterises the audio information of
the music. This process consists of two stages. First, audio features are extracted from the original MP3 files. Second,
these features are vectorized.

We used Python LibROSA [62] to extract audio features for data representation. First, we acquired the MP3 audio file
of song s; € S and sampled it at a rate of 8kHz to obtain the discrete data sequence of s;. Subsequently, a frame-splitting
operation was conducted [28] on the audio file of the song s;, with each frame window set at a length of 4096, resulting
in a duration of approximately 500 ms per frame. Following this, features were extracted from the framed data of each
song, encompassing root mean square energy, zero crossing rate, spectral centroid, spectral flatness, acoustic spectrum
attenuation, mel-frequency cepstral coefficient, chromaticity STFT, mel spectrogram, and more. Notably, 128 mel-filters
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were utilized to produce the mel-frequency cepstral coefficient and mel-spectrogram. Ultimately, these audio features,
excluding the mel-spectrogram, were concatenated to form a 57-dimensional audio-features vector for each song, with a
sample rate of 8 kHz, a frame length of 4096, and a step size of 2048. This resulting 57-dimensional vector serves as a
baseline for future comparative experiments.

The mel-spectrogram generated by LibROSA is fed directly into a CNN architecture to extract the key features and
represent them in a new vector [69], which is utilized in LSRF. The CNN architecture consists of four convolutional
layers and two fully connected layers. Each convolutional layer is followed by a Batch Normalisation layer, a Rectified
Linear Unit layer, and an average pooling layer. The number of filters in the four convolutional layers are 32, 32, 64, and
128, respectively. The training process utilizes Adam optimization with a batch size of 32. The output of the second fully
connected layer is a 200-dimensional representation of the audio data. Notably, the CNN architecture is not trainable
with LSRF, as the gradient descent optimization of deep neural networks is not computed in the same way as the
multiplicative weight update method used to optimize the LSRF model [20].

4.2.3 Textual Data Processing. The textual data of all the songs in the dataset were employed to train a BERT model,
which was subsequently used to generate a d-dimensional textual vector for each song. This process involved two
stages: the division of lyrics into sentences, and the vectorization of these sentences.

First, the lyrics of each song were divided into sentences, and the Chinese BERT pre-training model of the Xunfei
Joint Laboratory of HAITI [16] was deployed to directly generate sentence vector representations. Subsequently, the
average vectors of all sentences for a given song’s lyrics were taken as the song’s lyrical vector representation. To
ensure the consistency of expert annotation, any multilingual lyrics were translated to Chinese.

5 EXPERIMENTAL RESULTS
5.1 Experimental setup

For experimental purposes, both expert-annotated information and similarities between playlists were designated as
the sentiment prior for the playlist side. Similarly, both expert-annotated data and similarities between songs were
designated as the sentiment prior for the song side. In particular, we empirically set k = 5 for Equation (10) and k = 15
for Equation (14). Throughout our experiments, the LSRF model employed four parameters set as A = A = A7 = A = 1.
Thus, all sentiment signals were combined with equal weight.

When recognizing the sentiment of a song, the audio features extracted from the song were directly input into each
comparison model for training; However, in the case of multimodal data, the data from each modality were vectorized
separately and then concatenated as inputs for training. To achieve this, a preprocessing step was required to ensure
that the data from each modality were standardized. This approach enables the integration of multiple modalities, such
as audio and lyrics, to improve the accuracy of sentiment recognition.

When identifying the sentiments of a playlist, the vectors generated by the data for each song in the list were
combined as inputs and used as training data. Although vector concatenation and weighting (averaging) are both
commonly used to combine vectors, vector concatenation may face challenges stemming from the potentially large
differences in the final vector dimensions caused by the varying number of songs in each playlist. Therefore, we opted
to use vector averaging for all songs.

During the experiment, five-fold cross-validation was applied to obtain the results. Specifically, 80% of the data were
allocated for training and validation, with the remaining 20% was reserved for testing purposes.

5.2 Baseline methods and evaluation metrics

To validate the performance of the proposed music sentiment recognition model, we conducted a comparative analysis
using three categories of baseline models: classical, ensemble learning, and deep learning. Specifically, we selected
classical machine learning models including the decision tree (DT), logistic regression (LR), K-means clustering, and
support vector machine (SVM) [64, 89]; ensemble methods including the random forests (RF) [21, 42] and AdaBoost
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[91]; and deep learning methods such as CNN, long short-term memory (LSTM), and bidirectional LSTM (Bi-LSTM)
[22] as comparison models. A summary of the models and their structures is presented in Table 4.

Table 4. Settings for baseline models

Model Input data Input data Model structure (source)
(Identifying playlist sentiment) (Identifying song sentiment)

DT Vectorized playlist data Vectorized song data Scikit-learn, [33]

K-means | Vectorized playlist data Vectorized song data Scikit learn, [31]

LR Vectorized playlist data Vectorized song data Scikit-learn, [24]

SVM Vectorized playlist data Vectorized song data Scikit-learn, linear kernal, [9, 64, 89]

RF Vectorized playlist data Vectorized song data Scikit-learn, [21, 42]

Adaboost | Vectorized playlist data Vectorized song data Scikit-learn, [32, 91]

CNN Matrix? Matrix' 4*CNN+2*FC¥ softmax

LSTM Matrix? Matrix" LSTM+2*FC* softmax, [25;26]

Bi-LSTM | Matrix! Matrix’ BiLSTM+2*FC*% softmax, [25, 26]

# The matrix comprises all vectors associated with all songs on the playlist;
T Each musical composition is divided into clips of 30 seconds in duration [38, 64]. These clips are then vectorised;
¥ FC = fully connected layer. This is the standard operation of deep classifiers [4].

We assessed each model’s performance utilizing the metrics commonly employed in multi-classification tasks [60],
namely accuracy (F1-micro), precision, recall, and F1-macro of the models.

5.3 Performance evaluation

5.3.1 Performance comparison: feature-extraction-based data representation. Table 5 presents the performance results
of each model in identifying sentiments in songs and playlists. By comparing the results of the various methods, we
made the following observations:

e The LSRF method consistently outperformed the baselines for both song and playlist sentiment recognition
tasks based on data representation obtained through audio feature extraction.

o The LSRF method demonstrated superior performance in recognizing sentiments in songs, indicating that the
constraints of graph relations established from song features can effectively facilitate the clustering of similar
songs.

e The LSRF method produces superior results in the task of sentiment recognition in playlists, indicating that the
NMF-based model captures certain sentiment-related correlation information, such as co-occurrence between
songs.

5.3.2  Performance comparison: multimodality-vector-based data representation. Table 6 summarizes the performance
of each model in recognizing sentiments in playlists using a multimodal vector-based data representation. Upon
examination of these results, it is evident that:

o The use of deep learning models, such as CNN and BERT, to represent multimodal music data as vectors results
in substantial efficiency gains for all algorithms. Specifically, traditional machine learning algorithms and
ensemble methods exhibited significant improvements. This underscores the effectiveness of deep learning
models in the preprocessing of multimedia data.

e The LSRF clearly outperformed the baselines in nearly all aspects. In particular, it excelled in recognizing
the sentiments of playlists, outperforming all other algorithms. In the song sentiment experiment, although
the RF method achieved the highest accuracy, the LSRF was close behind with an insignificant difference in
performance.
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Table 5. Performance of models trained with audio feature vectors

Song sentiment recognition Playlist sentiment recognition
Model Accuracy Precision Recall Fl-macro | Accuracy Precision Recall Fl-macro
DT 0.4979 0.4987 0.4605  0.4571 0.6801 0.6813 0.6750  0.6677
K-means | 0.5173 0.5018 0.5102  0.4997 0.6694 0.6782 0.6618  0.6573
LR 0.5392 0.5357 0.5105 0.5148 0.7066 0.7030 0.6928  0.6921
SVM 0.5435 0.5561 0.5121  0.5156 0.7107 0.7166 0.6986  0.6957
Adaboost | 0.4903 0.4779 0.4651  0.4664 0.6796 0.6731 0.6682  0.6658
RF 0.5392 0.5357 0.5105 0.5148 0.7219 0.7108 0.7097  0.7083
CNN 0.5475 0.5245 0.5340  0.5263 0.6831 0.6681 0.6728  0.6660
LSTM 0.5650 0.5362 0.5453  0.5365 0.7015 0.6880 0.6920 0.6870
Bi-LSTM | 0.5692 0.5415 0.5673  0.5471 0.7144 0.7015 0.7051 '0.7001
LSRF 0.6208 0.6241 0.6241 0.6103 0.7270 0.7234 0.7155  0.7127

Table 6. Performance of models trained with multimodal vectors

Song sentiment recognition Playlist sentiment recognition
Model Accuracy Precision Recall Fl-macro | Accuracy Precision Recall Fl-macro
DT 0.5795 0.5492 0.5415 0.5423 0.6908 0.6830 0.6757  0.6758
K-means | 0.5622 0.5556 0.5595  0.5505 0.6255 0.6256 0.6244 0.6188
LR 0.5969 0.5750 0.5772  0.5733 0.7337 0.7230 0.7217  0.7217
SVM 0.5669 0.5511 0.5503  0.5460 0.7214 0.7099 0.7115  0.7099
Adaboost | 0.6079 0.5817 0.5731  0.5732 0.6969 0.6813 0.6818  0.6807
RF 0.6512 0.6320 0.6045 0.6049 0.7337 0.7236 0.7215 0.7214
CNN 0.5568 0.5452 0.5441 0.5417 0.6769 0.6733 0.6706  0.6658
LSTM 0.5630 0.5594 0.5577 .0.5562 0.7323 0.7218 0.7206  0.7200
Bi-LSTM | 0.5688 0.5735 0.5643  0.5606 0.7251 0.7103 0.7121  0.7101
LSRF 0.6423 0.6352 0.6378 0.6275 0.7378 0.7287 0.7288 0.7253

5.4 Discussion

We conducted several experiments to investigate the impact of various factors in the effectiveness of the LSRF model.
The primary focus was on expert annotation, value of @, and side information. The relationship between songs and
playlist sentiments was also examined.

5.4.1 Influence of expert annotation. Additional experiments were conducted to investigate the effectiveness of models
trained using fewer playlist samples. In these experiments, we categorized expert-labeled sample playlists into two
distinct groups: easy-to-identify and hard-to-identify.

The experimental design was set as follows. First, we selected two test datasets of easy- and hard-to-identify playlists,
respectively, each comprising 200 playlists, to ensure comparative consistency. Next, we randomly selected samples
from expert-labeled playlists with capacities of 1500, 1200, 900, 600, 300, and 50 as the training set. Each round of
experiments was conducted five times, with five datasets randomly selected to train the models at each sample capacity.
Finally, the average experimental results were reported for each model.

It is worth noting that the input data for each model in the experiment were the multimodal representation vectors
of songs. The experimental results shown in Figure 3 indicate the following:
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e By comparing the results shown in Figure 3(a) and 3(b), it is clear that the proposed LSRF model outperforms
all baselines. Additionally, the performance of each method improved as the number of expert-labeled training
samples increased. Nevertheless, it is noteworthy that all methods exhibited considerably lower performance
on the test data for hard-to-identify playlists;

o In the sample set of easy-to-identify playlists (see Figure 3(a)), the LSRF method exhibited the most outstanding
performance, closely followed by the RF method, which performed exceptionally well as the sample size
increased. Notably, the performance of the LSRF remained consistently stable even as the sample size decreased,
with the least variation in the F1-macro values.

o In the sample set of hard-to-identify playlists (see figure 3(b)), the LSRF outperformed all other algorithms
while exhibiting consistent stability.

(a) Easy-to-identify playlists (b) Hard-to-identify playlists

Fig. 3. Performance of models on small playlist samples.

5.4.2  Influence of the value of a. Equation (9) suggests that the LSRF must balance the contributions of both textual
and audio data when recognizing music sentiment. We therefore conducted experiments to investigate the effect of
in Equation (9) on LSRF performance, with results presented in Table 7.

Table 7. Effect of & on LSRF performance

o 0 0.1 0.2 0.3 0.4 0.5

Accuracy | 0.7270 0.7342 0.7342 0.7362 0.7332 0.7306
Pracro 07166 0.7222 0.7224 0.7246 0.7210 0.7184
Rutacro 0.7178 0.7235 0.7250 0.7268 0.7232 0.7198
Fl-macro | 0.7136 0.7204 0.7214 0.7234 0.7201 0.7169

We can observe that the performance of the LSRF improved as the proportion of lyrics in the concatenation vector
increased, until it reaches a peak at & = 0.3. Beyond this point, performance began to decrease. This suggests that
incorporating lyrical information is beneficial for improving the accuracy of the LSRF in sentiment recognition.
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Nonetheless, audio data play a more significant role in identifying the sentiment of a playlist. Therefore, we set « to the
optimal value of 0.3.

5.4.3  Effects of the side information. We conducted further experiments to compare the LSRF model’s performance in
recognizing the sentiments of songs and playlists after removing one, two, three, or four types of side information.
To achieve this, we removed a priori sentimental information from the LSRF framework by setting the values of the
corresponding parameters AY, A7, A}, and A5 to 0.

Table 8. Efficiency of Sentiment Recognition in Songs with Various Types of Side Information

Row | Strategy A A Ay AY | Fl-macro (loss)
1 Default 1 1 1 1 |062750)

2 Knock out one side information |0 1 1 1 | 0.6107(-2.67%)
3 1 0 1 1 |06225-0.79%)
4 1 1 0 1 |06027(-3.95%)
5 1 1 1 0 |06222(-084%)
6 Knock out two side information [0 0 1 1 | 0.5922(-5.63%)
7 0 1 0 1 |0.6066(-3.33%)
8 0 1 1 0 | 0.6115(-2.55%)
9 1 0 0 1 0.6169(-1.69%)
10 1 0 1 0 | 0.6231(-0.70%)
11 1 1.0 0 |05947(-523%)
12 Knock out three side information [0 0 0 1 | 0.5758(-8.25%)
13 0 0 1 0 0.5925(-5.58%)
14 0 1 0 0 0.6041(-3.73%)
15 1 0 0 0 |06184(-1.45%)
16 Knock out four side information |0 0 0 0 | 0.5732(-8.65%)

The results presented in Table 8 correspond to the effects of the four types of prior information (constraints) on
the effectiveness of song-based sentiment recognition. The third column lists parameter settings and the last column
lists the F1-macro values. The values in brackets indicates the percentage decrease in LSRF performance at the current
parameter setting compared to the scenario in which all constraints are present. From the table, we can make the
following observations:

o The performance of the LSRF model in recognizing song sentiments decreased when any a priori information
was removed.

e When determining the sentimental content of a song, the correlation between playlists (Row 4) and expert
annotations of playlists (Row 2) had a significant impact on the performance of LSRF.

e Combining the expert annotation of songs with their playlist annotation (Row 6) or combining the sentiment
relevance of songs with the sentiment relationship of playlists (Row 11) has a significant impact on model
performance.

Table 9 presents the impacts of the four types of prior information (constraints) on the effectiveness of playlist
sentiment recognition. First, all four types provide essential contributions for identifying playlist sentiments (Rows
12-16). Second, as the LSRF represents a typical semi-supervised learning method, the expert playlist annotations are
crucial in ensuring satisfactory performance (Rows 6 and 8).

Interestingly, the correlation between playlists (Rows 4 and 15) and the results of expert annotation for song sentiment
(Rows 3 and 9) had a relatively minor impact on model performance in identifying playlist sentiment. This suggests

ACM Trans. Multimedia Comput. Commun. Appl.



18 « Yuanetal

that the sentiment content of a playlist is generally determined by the combination of all constituent songs, rather
than a simple presentation of the individual sentiment of each song. Therefore, the sentiment information of a playlist
cannot be determined solely based on the sentiment content of its individual songs.

Table 9. Efficiency of Sentiment Recognition in Playlists with Various Types of Side Information

Row | Strategy Ay A Ay AY | Fl-macro (loss)
1 Default 1 1 1 1 ]0725()

2 Knock out one side information [0 1 1 1 | 0.7023(-3.17%)
3 1 0 1 1 |0.7135¢-1.62%)
4 1 1 0 1 |07188(-0.89%)
5 1 1 1 0 0.7122(-1.80%)
6 Knock out two side information [0 0 1 1 | 0.6837(-5.73%)
7 0 1 0 1 |0.7062(-2:62%)
8 0 1 1 0 0.6902(-4.83%)
9 1 0 0 1 0.7174(-1.08%)
10 1 0 1 0 0.7110(-1.97%)
11 1 1 0 0 |07174¢1.09%)
12 Knock out three side information | 0 0 0 1 | 0.6825(-5.89%)
13 0 0 1 0 0:6603(-8.96%)
14 0 1 0 0 |0.6836(-575%)
15 I 0 0 0 |0.7048(-2.82%)
16 Knock out four side information |0 0 0 0 | 0.6544(-9.77%)

5.4.4 Summed-song-sentiment vs. playlist-sentiment. When presented with a list of songs, listeners have the option to
express their MIE in two distinct manners: they can either assign a specific MIE score to each individual song after
listening to it, with these individual scores contributing to a cumulative summed-song-sentiment, or they can provide
an overall MIE rating for the entire playlist (i.e., playlist-sentiment) after listening to all the songs in the list.

The following experiments were conducted to investigate the differences between the summed-song-sentiment and
playlist-sentiment. Because the RF achieved highest accuracy in recognizing song sentiments among the baselines, it
was selected alongside the LSRF model. First, each of the models identified the sentiment of each song. Second, the
model identified the sentiment of the playlist. Finally, the summed-song-sentiment of each playlist and the identified
overall sentiment of each playlist - i.e., playlist-sentiment - were compared with the expert annotations. The results are
listed in Table 10.

Table 10. Summed-song-sentiment vs. playlist-sentiment

Accuracy Precision Recall Fl-macro
RF (summed-song-sentiment) 0.6634 0.6929 0.6318 0.6256

RF (playlist-sentiment) 0.7337 0.7236 0.7215 0.7214
LSRF (summed-song-sentiment) | 0.7347 0.7427 0.7290 0.7248
LSRF (playlist-sentiment) 0.7378 0.7287 0.7288 0.7253

The results in terms of F1-macro indicate that both RF and LSRF are more effective in recognizing the sentiments of
playlists as a whole than using the aggregated sentiments of individual songs in the list. Furthermore, it is evident that
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the enhancement in the outcomes of comparative experiments conducted using the RF algorithm was more pronounced
than that of the LSRF. This can be attributed to the fact that in the calculation of summed-song-sentiment, RF utilizes
only the vectorized data of individual songs for sentiment prediction, whereas the LSRF algorithm employs the data
of individual songs within the V-matrix. It is clear that the V-matrix acquires some of the “song-list” correlation
information during the matrix decomposition process. This analysis demonstrates that a sentiment expressed in a
playlist is not simply a sum of the sentiments expressed in the individual songs.

6 CONCLUSION

In this study, we developed the LSRF model to address the challenge of identifying the sentiments of songs as well
as playlists. To achieve this, a significant number of songs were initially annotated by domain experts as training
samples. The multimodal audio and textual information were then utilized to compute the “song-te-song” and the
“playlist-to-playlist” similarities. Finally, a non-negative matrix factorization-based model was developed, emphasizing
the co-occurrence of songs in playlists, as well as enabling the co-clustering of songs and playlists.

The experimental results demonstrate that the LSRF can simultaneously recognize sentiment information in both
songs and playlists. Moreover, by utilizing the relationship between songs and playlists, as well as incorporating relevant
side information constraints, the LSRF achieved remarkably efficient and consistent performance in recognizing playlist
sentiments, even given a limited number of annotated samples.
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